The Economics Of Removing Arsenic From Copper Concentrates Using The Toowong Process

Peter Rohner¹, Jon Loraine¹, Lachlan MacDonald¹, Michael Ross², Philip Bangerter³, John Baillie³

¹ – Core Resources, 2 – Mineral Technologies, 3 – Whittle Consulting
Outline

• Industry Context – “industry need”
• Technology Commercialisation – “the Core way”
• Technology and Recent Results
• Capex/Opex Study
• Enterprise Optimisation Study
• The Future – “next steps”
Industry Need - The Arsenic Problem is Getting Worse

Arsenic (%) in world copper concentrates
Source: CODELCO

Penalty charges (US$) by % arsenic

- Penalties (US$/lb payable Cu)
- Penalties (US$/lb As removed)
Industry Need - The Problem with Today’s Solutions

- Blend copper concentrates to meet target arsenic levels for smelters. Smelters deal with arsenic; or,
- Roast arsenic rich concentrates ahead of smelting the copper calcine material; then treat arsenic dusts; or
- During copper metal production use leaching-SX-EW. Arsenic is fixed in the process and disposed in dedicated tailings facilities.

The Problem?
...smelting generates unstable arsenic residues
...major arsenic environmental issues in & around smelters
...tightening government controls on allowable levels
...expensive/prohibitive treatment charges for miners
...increasing arsenic levels in mining projects globally
From Process to Pilot (and Beyond)

• From Process to Pilot Competed – discussed last year

• and Beyond

 – Demonstration of the process continues – new ores, optimising flowsheet, with new lower cost arsenic fixation options

 – Advancing engineering design and costings – appointed Technology Delivery Partner, Mineral Technologies (Downer)

 – Advancing the value proposition – collaboration with Whittle Consulting evaluating impact of Toowong Technology on project value
Toowong Process: A Demonstrated Technology

$4.5 \text{ M pilot plant in 2012}
Treated 1.5 tonnes from three global resources: Bulgaria, Philippines, Chile
34 days of continuous treatment

✓ >90% As Removal
✓ Final concentrate <0.1% As, down from 1.1%
✓ Arsenic product generated
✓ Low reagent consumption
✓ Process demonstrated at continuous steady state
Flowsheet - Copper

1. Concentrate Feed → Toowong Process Leach
2. Sodium Hydroxide → Leach Recycle
3. Leach Recycle → Treated Low Arsenic Concentrate
4. Oxygen → Solution Oxidation
5. Solution Oxidation → Gold Rich Residue
6. Steam → Evaporative Crystallisation
7. Evaporative Crystallisation → Mixed Crystal
8. Mixed Crystal → Arsenic Fixation Option 1 (Vitrification Route)
9. Mixed Crystal → Arsenic Fixation Option 2 (Ferric Arsenate)

Caustic Recycle

Route:
- Option 1: Vitrification
- Option 2: Ferric Arsenate
Some more recent Program Results

<table>
<thead>
<tr>
<th>Project</th>
<th>Sample A Tampakan</th>
<th>Sample B Toowong Blend*</th>
<th>Sample C Sth America</th>
<th>Sample D Sth America</th>
<th>Sample E Europe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testwork Stage</td>
<td>Batch</td>
<td>Pilot</td>
<td>Batch</td>
<td>Batch</td>
<td>Batch</td>
</tr>
<tr>
<td>Starting Grade</td>
<td>As %w/w</td>
<td>3.25</td>
<td>1.11</td>
<td>2.42</td>
<td>5.24</td>
</tr>
<tr>
<td>Final Grade</td>
<td>As %w/w</td>
<td>0.13</td>
<td>0.11</td>
<td>0.06</td>
<td>0.59</td>
</tr>
<tr>
<td>Leach Extraction</td>
<td>As %</td>
<td>95.2</td>
<td>90.0</td>
<td>97.7</td>
<td>90.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starting Grade</td>
<td>Sb %w/w</td>
<td>0.06</td>
<td>0.81</td>
<td>0.81</td>
<td>5.61</td>
</tr>
<tr>
<td>Final Grade</td>
<td>Sb %w/w</td>
<td>0.01</td>
<td>0.06</td>
<td>0.06</td>
<td>0.56</td>
</tr>
<tr>
<td>Leach Extraction</td>
<td>Sb %</td>
<td>78.0</td>
<td>93.7</td>
<td>93.7</td>
<td>92.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starting Grade</td>
<td>Cu %w/w</td>
<td>21.4</td>
<td>17.2</td>
<td>17.2</td>
<td>23.4</td>
</tr>
<tr>
<td>Final Grade</td>
<td>Cu %w/w</td>
<td>21.9</td>
<td>18.8</td>
<td>18.8</td>
<td>26.6</td>
</tr>
<tr>
<td>Leach Extraction</td>
<td>Cu %</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Toowong Blend Composition - 96 %w/w Collahuasi / 4 %w/w Chelopech
Capex – Ferric Arsenate Option

<table>
<thead>
<tr>
<th>Concentrate Treated</th>
<th>2.5% As</th>
<th>40,000 tpa</th>
<th>200,000 tpa</th>
<th>400,000 tpa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper Concentrate</td>
<td>tpa</td>
<td>40,000</td>
<td>200,000</td>
<td>400,000</td>
</tr>
<tr>
<td></td>
<td>tph</td>
<td>5.0</td>
<td>24.8</td>
<td>49.6</td>
</tr>
<tr>
<td>Capex - US$</td>
<td>$37,000,000</td>
<td>$98,000,000</td>
<td>$147,000,000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Equipment</td>
<td>$6,927,722</td>
</tr>
<tr>
<td>Structural & Platework</td>
<td>$2,625,817</td>
</tr>
<tr>
<td>Earthworks & Civils</td>
<td>$1,513,296</td>
</tr>
<tr>
<td>Electrical & Instrumentation</td>
<td>$3,830,934</td>
</tr>
<tr>
<td>SMP Construction</td>
<td>$5,418,288</td>
</tr>
<tr>
<td>E & I Construction</td>
<td>$1,458,002</td>
</tr>
<tr>
<td>EPCM</td>
<td>$5,120,478</td>
</tr>
<tr>
<td>Contractors Margin</td>
<td>$2,924,923</td>
</tr>
<tr>
<td>Piping & Valves</td>
<td>$1,445,022</td>
</tr>
<tr>
<td>Transport</td>
<td>$909,667</td>
</tr>
<tr>
<td>Contingency (15%)</td>
<td>$4,826,123</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$37,000,273</td>
</tr>
</tbody>
</table>
Opex – Ferric Arsenate Option

<table>
<thead>
<tr>
<th>Concentrate Treated</th>
<th>2.5% As</th>
<th>40,000 tpa</th>
<th>200,000 tpa</th>
<th>400,000 tpa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opex - US$/lb As removed low *</td>
<td>$4.59</td>
<td>$3.70</td>
<td>$3.58</td>
<td></td>
</tr>
<tr>
<td>Opex - US$/lb As removed high</td>
<td>$5.49</td>
<td>$4.57</td>
<td>$4.48</td>
<td></td>
</tr>
</tbody>
</table>

Including capital amortisation, opex is in the range of:

US$5.30/lb As removed for larger plants

and

US$7.80/lb As removed for smaller plants

Next phase of development work is focused on an environmentally superior option to the industry standard ferric arsenate fixation approach
Example Plant Layout – 40,000 tpa concentrate
Why Toowong?

- Chemically separates arsenic at the mine site
- Captures arsenic in an environmentally stable form
- Returns arsenic to its original native location
- Creates premium clean copper concentrate for shipment to smelter
- No downstream copper metal recovery required
- Environmentally superior technology
- Enabling technology for stranded projects
- Significant cost savings for current mines

<table>
<thead>
<tr>
<th></th>
<th>Toowong</th>
<th>ASL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nil/Low Sulphide</td>
<td>Nil/Low Sulphide Addition</td>
<td>High Sulphide Addition</td>
</tr>
<tr>
<td>Addition</td>
<td>0 to 15 kg/t</td>
<td>100 to 150 kg/t</td>
</tr>
<tr>
<td></td>
<td>0 to US$7.5/t conc</td>
<td>US$50 to $75/t conc</td>
</tr>
<tr>
<td>Low Poly Sulphides</td>
<td>Low Poly Sulphides</td>
<td>High Poly Sulphides</td>
</tr>
<tr>
<td>Low Sulphate Bleed</td>
<td>Low Sulphate Bleed</td>
<td>High Sulphate Bleed</td>
</tr>
<tr>
<td>Low Gold Dissolution</td>
<td>Low Gold Dissolution</td>
<td>High Gold Dissolution</td>
</tr>
</tbody>
</table>

This technology should be considered a “game changer”. ... The Toowong Process has the potential to unlock sites that are currently considered unviable mineralisations for sustainable mining throughout the world.

Dr David Way, CEO, JKTech (University of Queensland)
Context of EO with a Technology

A methodology that:

- expands practice to entire value chain, modelling systemic impacts
- maximizes the rate of net cash flow
- Incorporates activity-based-costing, theory-of-constraints concepts and sustainability.

For a technology, method or idea:

- Direct benefit in NPV terms
- Indirect benefit from an re-optimisation case
 - Enablement
 - Strategic Mine Plan
- Licence-to-operate benefit
 - Tangible
 - Intangible

Verifying the Technology Benefits in a Whole-of-Business Analysis.
Previous Work

For Toowong - what proportion of total benefit can be ascribed to:

- The direct benefit of reduction in penalties against Capex & Opex?
- The direct benefit of blending Hi/Low-As cons?
- The indirect benefit from a re-optimisation case?

<table>
<thead>
<tr>
<th>Partner</th>
<th>Tech/Concept</th>
<th>Published</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC Ore</td>
<td>Grade Engineering</td>
<td>Jul 2016</td>
</tr>
<tr>
<td>Safescape</td>
<td>Edge Protector</td>
<td>Oct 2016</td>
</tr>
<tr>
<td>CORE Resources</td>
<td>Toowong Process</td>
<td>May 2017</td>
</tr>
<tr>
<td>S. Howe (Masters)</td>
<td>Intensive Blasting</td>
<td>Jun 2017</td>
</tr>
<tr>
<td>MTGA</td>
<td>Driverless Trucks</td>
<td>Jun 2017</td>
</tr>
<tr>
<td>Mining Sense</td>
<td>Bucket Sensor</td>
<td>Jul 2017</td>
</tr>
</tbody>
</table>
Details of the Toowong Optimisation

Case Study Set-up

- Marvin copper gold ore body;
- Assigned As values through in typical deportment; emulation of high As mineralisation
- 3 cases modelled:
 1. Base Mining & Process
 2. Apply Optimisation mechanisms; basic & uncomplicated
 3. Model a Toowong Process treatment route
 - Included cut-off, stockpile & blending
 - Excluded other more complex mechanisms

Assumptions

- Capex add $70 M for Toowong Process (Case 3)
 - 100,000 tpa Concentrate treatment
- Capex added additional $50 M for Concentrator in Case 3
- $5/lb As removal charge - opex
- Mining limit 40 Mt/y
- Processing limit 15 Mt/y
- Concentrate limit 0.5% As
- Typical penalties applied where needed
Results of Optimisation - Physicals

- The real benefit is coming from being able to process material you otherwise had to discard.
- High As material treated increases from 3 Mt to 40 Mt with Toowong Process circuit available.
- Only 28% of the LOM concentrate has to be treated, the rest by-passes directly to product.
- Extra 56% Copper sold in concentrate over LOM.

Case 1
- High As Ore: 3 Mt
- Cu LOM: 871 kt

Case 3
- High As Ore: 40 Mt
- Cu LOM: 1,363 kt
Results of Optimisation - Financials

- 14 Year Mine Life for Toowong Case
- LOM Revenue (Nominal US$)
 Case 1 US$ 6.4B
 Case 2 US$ 8.3B
 Case 3 US$10.2B
Next Steps

Core has a clear development path for the Toowong Process.

Toowong Process:
Project Funding
✓ ~$1 M Accelerating Commercialisation Grant to mid 2018
✓ Downer – Mineral Technologies appointed as Delivery Partner
✓ End user engagement has commenced with study work being conducted right now for global clients

Commercialisation Timeline
✓ Ongoing identification of opportunities
✓ Strong interest from producers, traders and smelters seeking a competitive advantage
 Studies for end user clients 2016-2017
 End user licences issued Q1 2018
Acknowledgments

• Core would like to thank its clients and dedicated staff, who were involved in the development of the Toowong Process from testwork to piloting to achieving recognition in various innovation awards.

• Downer – Mineral Technologies for their support as the Delivery Partner for the Toowong Process.

• Whittle for its support in completion of an Enterprise Optimisation study to support this presentation.

• AusIndustry for providing an accelerating commercialisation grant to support the Toowong Process commercialisation.

Questions?