Innovations in Copper Mineral Processing Technology

Peter Rohner
Core Resources, Brisbane

www.coreresources.com.au

17th June 2014
Company Overview

Highlights

• Specialist Metallurgical services:
 – hrltesting (metallurgical laboratory – operating over 30 years).
 – Process engineering, design and flowsheet development
 – Scoping and Feasibility Studies
 – Technology Development Partner

• Strong Technical Team (~50 Staff):
 – Grinding, flotation and hydrometallurgical expertise
 – Flowsheet development with an economic focus and outcomes that can be engineered and operated
 – Project development, commissioning and operational experience
Update on Copper Applications using:

- **Ore Sorting**
 Rejecting Low Grade Material from Copper Ores

- **Heavy Medium Separation**
 Rejecting Low Grade Material from Copper Ores

- **Toowong Process**
 Removing Impurities from Copper Concentrates

- **Albion Process**
 Treating Low grade/dirty Copper Concentrates
Definition of a Metallurgist

met·al·lur·gist (mtl-ûrjst)

> A pseudo scientist, who uses undetermined suppositions, inexpressible hypotheses; which are based on unreliable information, uncertain quantities, and incomplete data; derived from non-reproducible experiments and incomplete investigations; using equipment and instruments of questionable accuracy, insufficient resolution, and inadequate sensitivity, to arrive at timid, tentative, cloudy, abstruse, and non-committed conclusions prefaced by the phrase

“IT DEPENDS……..”
Copper Processing Flowsheets

ROM ore → In-Situ Leaching

Size → Dump/Heap Leaching

Ore Sorting or HMS → Concentration (Gravity / Flotation)

Rejects → Toowong Leach

High Grade Concentrate

Leach → Neutralisation

Tailings

Lower Grade Concentrate

Concentrate - Lower Impurities (e.g. As, Sb)

Acid

Neutralisation → Metal Recovery

SX/EW

SX/Crystallisation

Precipitation

Cementation

Products
- Cathode
- Sulphate
- Cement
- Oxide / Sulphide
- Other

By-products
- Gold/Silver
- Cobalt
- Molybdenum
- Rhenium
- Indium
- Uranium
- Other

Residue
Copper Processing Flowsheets

- ROM ore
- In-Situ Leaching
- Dump/Heap Leaching
- Size
- Concentration (Gravity / Flotation)
- Leach
- Neutralisation
- Toowong Leach
- Concentrate
- Lower Grade Concentrate
- Tailings
- Metal Recovery
 - SX/EW
 - SX/Crystallisation
 - Precipitation
 - Cementation
- Acid
- Alkaline
- Products
 - Cathode
 - Sulphate
 - Cement
 - Oxide / Sulphide
 - Other
- By-products
 - Gold/Silver
 - Cobalt
 - Molybdenum
 - Rhenium
 - Indium
 - Uranium
 - Other
- ROM ore
- ROM ore
-rejects
- High Grade Concentrate
- Ore Sorting or HMS
Reasons for Copper Ore Sorting

• Pre-concentrate ore at mine:
 – Removes low-grade fraction that is uneconomic to process.
 – Reduces haulage costs.
 – Reduces grinding energy and flotation reagent costs.
 – Improves metal recoveries.

• Monitor the mill feed which provides real time data to operators for process optimization.

Some of these apply to Heavy Medium Separation also
• Pre-concentrate feed into high-grade and low-grade stockpiles:
 – Optimize multiple process streams i.e. send ore to either mill, heap leach or smelter.
 – Allows smaller mills to be built or increase capacity of an existing mill.
 – Manage ore blending programs more effectively.
• For copper heap leach applications, removes gangue acid-consuming (GAC) rocks which reduces acid costs.
Sorter General Operation

• The processor, using pre-determined criteria, decides what ore is accepted and which ore is rejected.
• Processor drives either valves/flop gates or pneumatic pulses to send the products and rejects to their appropriate bin or conveyor.
Ore Sorting Techniques

- Optical
- Specific wavelength:
 - X-Ray Transmission (XRT)
 - X-Ray Fluorescence/ Ultraviolet
 - Near infrared
 - Radiometry (Gamma Rays)
- X-Ray Luminescence
- High Frequency Electromagnetic
- Colour
XRT examples

- **Industrial Examples:**
 - Metallurgical testwork has been completed on copper ores using XRT technology.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mass Distribution (%)</th>
<th>Copper Distribution (%)</th>
<th>Copper Grade (%)</th>
<th>Copper Upgrade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Product</td>
<td>Product</td>
<td>Head</td>
<td>Product</td>
</tr>
<tr>
<td>A</td>
<td>67%</td>
<td>93%</td>
<td>1.0</td>
<td>1.4</td>
</tr>
<tr>
<td>A</td>
<td>60%</td>
<td>87%</td>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>B</td>
<td>60%</td>
<td>85%</td>
<td>1.0</td>
<td>1.4</td>
</tr>
<tr>
<td>C</td>
<td>24%</td>
<td>65%</td>
<td>1.0</td>
<td>2.7</td>
</tr>
<tr>
<td>D</td>
<td>56%</td>
<td>88%</td>
<td>1.0</td>
<td>1.6</td>
</tr>
<tr>
<td>E</td>
<td>74%</td>
<td>86%</td>
<td>1.0</td>
<td>1.2</td>
</tr>
<tr>
<td>F</td>
<td>89%</td>
<td>95%</td>
<td>1.0</td>
<td>1.1</td>
</tr>
</tbody>
</table>
• **Industrial Examples:**
 – Scats from a Ball Mill

Pink - Carbonates (low Cu)
Grey - Bedded Siltstones (high Cu)
Colour examples

• **Industrial Examples:**
 – Scats from a Ball Mill

Red/Pink - Native Copper
Examples of GAC Rock Removal

- Testwork on projects have successfully tested ores with the objective of removing gangue acid consuming (GAC) minerals. These include:
 - Removal of calcites/carbonates in a finished quartz stream.
 - Rejection of GAC minerals from manganese and iron ores.
 - Removal of carbonates from uranium ore to achieve an upgraded concentrate before downstream processing.
 - and with this we believe similar applications could be used on copper ores.
Heavy Medium Separation (HMS)

- Heavy medium separation is the process of separating copper ores by a specific medium (ferro-silicon) density.
- Testwork on copper ores at a size range of -76 mm + 6 mm and a medium density of 2.8 demonstrated that 49% of the mass can be rejected whilst only losing 14% of copper – an upgrade of 169%.

<table>
<thead>
<tr>
<th>Stream</th>
<th>Feed (-76 mm +6 mm)</th>
<th>+2.8 SG (Product)</th>
<th>-2.8 SG (Rejects)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass Distribution (%)</td>
<td>100%</td>
<td>51%</td>
<td>49%</td>
</tr>
<tr>
<td>Copper Grade (%)</td>
<td>1.5</td>
<td>2.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Copper Distribution (%)</td>
<td>100%</td>
<td>86%</td>
<td>14%</td>
</tr>
<tr>
<td>Copper Upgrade (%)</td>
<td>169%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Heavy Medium Separation (HMS) cont.

- **Industrial Examples:**
 - Jaguar lead, copper, zinc and silver project in Western Australia, installed a HMS plant in 2011.
 (30 to 35% mass rejected, with 40% upgrade in Feed Grade)

 “Mill performance was improved after completion of the Heavy Media Separation plant (HMS) which removes waste rock from diluted ore and stringer sulphides and increases the mill head grade, reducing processing costs”

 Independence Group 2011/12 Annual Report
Toowong Process

- Determined a clear need with increasing levels of Arsenic in Copper Concentrates
- Started development work in 2009
- Extensive batch and continuous locked cycle testing
- Tested a range of copper (1.1% to 3.3% As) and nickel concentrates (0.8% As)
- Leaches Enargite, Tennantite, Tetrahedrite, Gersdorffite
- Mini Pilot in November 2011
- Maxi Pilot in November 2012
Maxi Pilot Plant - Overview

- Ran from 19th Nov - 21st Dec 2012
- Major $4.5M integrated pilot campaign employing over 60 personnel
- ~53 kg/day Copper Concentrate treated
 - 11 days, Toowong Blend
 - 23 days, Tampakan Composite
Maxi Pilot Plant - Flowsheet

Evaporation

Leach

Feed Concentrate

Sodium Hydroxide (Make-up)

Leach Recycle

Treated Concentrate

Precipitate Residue

Autoclave

Bleed

Oxygen

Gold + Antimony Precipitate

Precipitation Reagents

Precipitate

Water (Condensate)

Reagent Recycle

Crystal

Calcium Hydroxide + Barium Hydroxide + Process Water

Natrium Hydroxide (Make-up)
Maxi Pilot Plant - Operation

November 2012

Leach Circuit

Concentrate Repulp Circuit
Maxi Pilot Plant - Operation

November 2012

Leach Residue Filtration

PLS Oxidation Autoclave
Maxi Pilot Plant - Operation

November 2012

Arsenic and Sulphate Precipitation and Filtration

Caustic Evaporator
Maxi Pilot Plant - Operation

Live Process Monitoring
(Temperature, Pressure, Mass Flow, Tank Level, Current Draw)
Maxi Pilot Plant - Operation

- Key results:

<table>
<thead>
<tr>
<th>Units</th>
<th>Toowong Blend</th>
<th>Tampakan Concentrate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Feed</td>
<td>Product</td>
</tr>
<tr>
<td>As</td>
<td>1.11</td>
<td>0.11</td>
</tr>
<tr>
<td>Sb</td>
<td>0.06</td>
<td>0.01</td>
</tr>
</tbody>
</table>

- 0.09% arsenic in treated concentrate over the final 10 days of testing Tampakan concentrate (average)
- >90% arsenic extraction over the final 10 days of testing (average)

- Also significant removable of antimony, mercury and tin
Toowong Funding and IP

- Core Resources and Xstrata (Now Glencore) Funded Development
- Provisional Patent lodged in Oct 2011
- Glencore currently owns IP, (since has reverted to Core)
- Core Resources has rights to use and licence to third parties any patents granted
Albion Process Leach Flowsheets

- **Size**
 - ROM ore → Coarse
 - ROM ore → Fines

- **Concentration (Gravity / Flotation)**
 - Low Grade Concentrate
 - Concentrate: Lower Impurities (e.g. As, Sb)
 - Tailings

- **Albion Leach**

- **Neutralisation**
 - Residue

- **Metal Recovery**
 - SX/EW
 - SX/Crystallisation
 - Precipitation
 - Cementation

Products
- Cathode
- Sulphate
- Cement
- Oxide / Sulphide
- Other

By-products
- Gold/Silver
- Cobalt
- Molybdenum
- Rhenium
- Indium
- Uranium
- Other

Concentrate
- High Grade Concentrate

Tailings
Opportunities to Add Value

- Alternative products
- By-products
- In-situ acid production – reduce acid cost
- Use of alternative neutralising materials – reduce neutralising cost
- Impurity removal
- Integrated flowsheets
- Additional metal recovery
- Key drivers
Copper Cathode
- Larger scale projects
- Low/moderate power costs
- Remote / high transport costs

Copper Sulphate
- Premium over metal
- Smaller scale projects
- Power costs higher
- Local demand – zinc flotation, fertilizer plant, feedlot

Other (Cement, Copper Sulphide, Copper Oxide)
- Copper cement – concentrates or low cost scrap iron available
- Intermediate product – market nearby or integrated flowsheet

\[\text{Cu}^{2+} + \text{Fe} = \text{Fe}^{2+} + \text{Cu} \]
Many large undeveloped copper deposits have significant impurity issues.

- Salobo, Brazil: High Fluorine
- La Granja, Peru: High Arsenic
- Tampakan, Philippines: High Arsenic
- Nena, PNG: High Arsenic
- Many other South American Copper Projects: High Arsenic
Concentrate and Leaching Synergies

Case Study

Normal grade concentrate for sale

vs.

High grade concentrate for sale

plus

Low grade concentrate to leaching
Copper Recovery

Copper Grade/Recovery

- Liberated Chalcopyrite
- Target Concentrate Grade - 25% Cu
- Max. Theoretical Recovery
- Perfect Separation

Copper Grade - % Cu

Copper Recovery %
Copper Recovery

Copper Grade/Recovery

- Liberated Chalcopyrite
- Plant Separation
- Liberated Gangue recovered by "Entrainment" or "True" Flotation
- Perfect Separation
- Target Concentrate Grade - 25% Cu
- Plant Recovery
Copper Recovery – Case Study

Copper Grade/Recovery

-目标 concentrates 含铜量 - 30% Cu
- 生产铜精矿 - 7.5% Cu
- 用于销售的浓缩物
- 用于浸出的浓缩物
- 自由状黄铜矿

Copper Grade - % Cu

Copper Recovery %
Case Study - Project A

• Copper/Cobalt concentrate recovered from tailings of existing copper operation

• Grade of concentrate - 2.2% Cu and 0.28% Co

• Prefeasibility testing followed by Albion Process Pilot Plant run

• Pilot Results on ~600 kg of concentrate over 24 day run
 • 94% Copper extraction
 • 81% Cobalt extraction

• Downstream cobalt recovery testwork now being conducted

• Project Capex in the order of $80M
Case Study - Project B

- Copper/Gold concentrate recovered from tailings of existing copper operation (additional 17% Cu and 25% Au recovery)
- Grade of concentrate - 2.4% Cu and 1.5 g/t Au
- Tonnes of concentrate – 640,000 tpa, containing ~15,000 tpa Cu and ~30,000 oz Au/y

- Scoping Study results
 - 93% Copper recovery
 - 85% Gold recovery

- Project Capex in the order of US$200M
Summary

• Ore sorting can be used in copper processing for:
 – Upgrading ore to reduce haulage, reduce processing costs and improve the overall capital cost position along with;
 – Removing GAC minerals in heap leach applications.
• Heavy Medium Separation can be used on some copper ores to improve project economics.
• Toowong Process has demonstrated that it is an option for removing impurities from “dirty” copper concentrates.
• Albion Process has a role in improving overall project economics, by improving recovery of copper from certain more difficult projects, along with dealing with impurities.
“Initially, HS was somewhat concerned that Barrick had chosen Core, rather than an independent engineering firm, to carry out this pre-feasibility study (PFS), because one might have expected a positive bias towards the Albion Process option As was demonstrated by the outcome of the pre-feasibility study, which looked at three potential process options (Albion, Roaster and a hybrid roaster/Albion Process), such worries were unfounded”
Questions ?